
Week 9 - Wednesday

 What did we talk about last time?
 More on linked lists
 enum
 Bit fields

 The next topics we'll discuss today are primarily about saving
space

 They don't make code safer, easier to read, or more time
efficient

 At C's inception, memory was scarce and expensive
 These days, memory is plentiful and cheap

 You can define a struct and define how many bits wide each element is
 It only works for integral types, and it makes the most sense for unsigned int
 Give the number of bits it uses after a colon
 The bits can't be larger than the size the type would normally have
 You can have unnamed fields for padding purposes

typedef struct _toppings
{

unsigned pepperoni : 1;
unsigned sausage : 1;
unsigned onions : 1;
unsigned peppers : 1;
unsigned mushrooms : 1;
unsigned sauce : 1;
unsigned cheese : 2; //goes from no cheese to triple cheese

} toppings;

 You could specify a pizza this way

toppings choices;
memset(&choices, 0, sizeof(toppings));
//sets the garbage to all zeroes
choices.pepperoni = 1;
choices.onions = 1;
choices.sauce = 1;
choices.cheese = 2; //double cheese
order(&choices);

 Structs are always padded out to multiples of 4 or even 8
bytes, depending on architecture
 Unless you use compiler specific statements to change byte packing

 After the last bit field, there will be empty space up to the
nearest 4 byte boundary

 You can mix bit field members and non-bit field members in a
struct
 Whenever you switch, it will pad out to 4 bytes
 You can also have 0 bit fields which also pad out to 4 bytes

Data Bits

light
toaster

padding

1
1
30

count 32

outlets
unnamed
clock

unnamed
padding

4
4
1
0
23

flag
padding

1
31

struct kitchen
{

unsigned light : 1;
unsigned toaster : 1;
int count; // 4 bytes
unsigned outlets : 4;
unsigned : 4;
unsigned clock : 1;
unsigned : 0;
unsigned flag : 1;

};

16
bytes

 You can also use a pointer to a struct with bit fields to read bit values out
of other types

 Which bit is which is dependent on endianness

typedef struct
{

unsigned LSB : 1;
unsigned : 30;
unsigned MSB : 1;

} bits;

bits* bitsPointer;
int number = 1;
float value = 3.7;
bitsPointer = (bits*)&number;
printf("LSB: %d\nMSB: %d\n", bitsPointer->LSB, bitsPointer->MSB);

 Bit fields are compiler and machine dependent
 How those bits are ordered and packed is not specified by the

C standard
 In practice, they usually work
 Most machines are little endian these days
 You're okay if your code is always running on the same machine

 In theory, endianness and packing problems can interfere

 What if you wanted a data type that could hold any of three
(or more!) different things
 But it would only hold one at a time …

 Yeah, you probably wouldn't want that
 But, back in the day when space was important, maybe you

would have
 This is exactly the problem that unions were designed to solve

 Unions look like structs
 Put the keyword union in place of struct

 There isn't a separate district and a state
 There's only space for one at a time
 The total space is big enough to hold the larger one
 In this case, 15 bytes (rounded up to 16) is the larger one

union Congressperson
{

int district; // Representatives
char state[15]; // Senators

};

 We can store into either one

 But … the other one becomes unpredictable

union Congressperson representative;
union Congressperson senator;
representative.district = 1;
strcpy(senator.state, "Wisconsin");
printf("District: %d\n", senator.district);
// Whoa, what's the int value of Wisconsin?

 How can you tell what's in the union?
 You can't!

 You need to keep separate information that says what's in the
union

 Anonymous (unnamed) unions inside of structs are common
struct Congressperson
{

bool senator; // Which one?
union
{

int district; // Representatives
char state[15]; // Senators

};
};

 We could use such a struct to store terms in an algebraic expression
 Terms are of the following types
 Operands are double values
 Operators are char values: +, -, *, and /

typedef enum { OPERATOR, OPERAND } Type;
typedef struct
{

Type type;
union
{

double operand;
char operator;

};
} Term;

 A tree is a data structure built out of nodes with children
 Every child has exactly one parent node
 There are no loops in a tree
 A tree expresses a hierarchy or a similar relationship

 The root is the top of the tree, the node which has no parents
 A leaf of a tree is a node that has no children
 An inner node is a node that does have children
 An edge or a link connects a node to its children
 A subtree is a node in a tree and all of its children

 A binary tree is a tree such that each node has two or fewer
children

 The two children of a node are generally called the left child
and the right child, respectively

 A binary search tree is binary tree with three properties:
1. The left subtree of the root only contains nodes with keys less than

the root’s key
2. The right subtree of the root only contains nodes with keys greater

than the root’s key
3. Both the left and the right subtrees are also binary search trees

4

2 5

1 3 6

typedef struct _Tree
{

int data;
struct _Tree* left;
struct _Tree* right;

} Tree;

 Write a function that will find an element in a BST
 Use recursion
 Hints:
 If the value is smaller than the current root, look to the left
 If the value is larger than the current root, look to the right

Tree* find (Tree* root, int value);

 Write a function that will add an element to a BST
 Use recursion
 Hint: Look for the location where you would add the element,

then add when you reach a NULL

Tree* add (Tree* root, int value);

 In the systems programming world, there are two different
kinds of time that are useful

 Real time
 This is also known as wall-clock time or calendar time
 It's the human notion of time that we're familiar with

 Process time
 Process time is the amount of time your process has spent on the

CPU
 There is often no obvious correlation between process time and real

time (except that process time is never more than real time elapsed)

 For many programs it is useful to know what time it is relative
to some meaningful starting point

 Internally, real world system time is stored as the number of
seconds since midnight January 1, 1970
 Also known as the Unix Epoch
 Possible values for a 32-bit value range from December 13, 1901 to

January 19, 2038
 Systems and programs that use a 32-bit signed int to store this

value may have strange behavior in 2038

 The time() function gives back the seconds since the Unix Epoch
 Its signature is:

 time_t is a signed 32-bit or 64-bit integer
 You can pass in a pointer to a time_t variable or save the return value

(both have the same result)
 Typically we pass in NULL and save the return value
 Include time.h to use time()

time_t seconds = time(NULL);
printf("%d seconds have passed since 1970", seconds);

time_t time(time_t* timePointer);

 Finish time
 Union example
 Review for Exam 2

 Finish Project 4
 Study for Exam 2
 Next Monday in class

 Keep reading K&R chapter 7

	COMP 2400
	Last time
	Questions?
	Project 4
	Saving Space
	Saving space
	Bit fields in a struct
	Code example
	Struct size and padding
	Padding example
	An alternative to bitwise operations
	Unfortunately …
	Unions
	Unions
	Declaring unions
	Example use
	What's in the union?
	Operands and operators
	Binary Trees
	Tree terminology
	Binary tree
	Binary search tree (BST)
	Binary Search Tree
	Example BST node in C
	Finding an element in a BST
	Adding to a BST
	Time
	Time
	Calendar time
	time()
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

